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ABSTRACT 

We define the  concept  of  level for a rb i t ra ry  subgroups  F of finite index in 

t h e  special  l inear group SL2(As) ,  where As is the  r ing of S- in tegers  of  a 

global  field k provided t h a t  k is an  algebraic n u m b e r  field, or card (S) > 2. 

It  is shown t h a t  th is  concept  agrees wi th  the  usua l  not ion  of 'S tufe '  for 

congruence  subgroups .  In the  case SL2(O),  (9 the  r ing of integers  of an  

imag ina ry  quadra t i c  n u m b e r  field, th is  criterion for deciding whe the r  or 

not  an  a rb i t r a ry  s u b g r o u p  of finite index is a congruence  subgroup  is used 

to de te rmine  the  m i n i m u m  of the  indices of non-congruence  subgroups .  

1. I n t r o d u c t i o n  

In the theory of modular forms, the concept of level for an arbitrary subgroup F 

of finite index in SL2(Z) was defined by Wohlfahrt [21, 22] as the least common 

multiple of the widths of the cusps of the fundamental domain for the group. 

Previously the notion of level, called 'Stufe' by Klein, was only defined for con- 

gruence subgroups. It is a result of Fricke and Wohlfahrt that for congruence 
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subgroups the two definitions coincide. In this paper we define the concept of 

level for arbitrary subgroups F of finite index in the special linear group SL2 (As), 

where As is the ring of S-integers of a global field k provided that k is an al- 

gebraic number field, or card (S) > 2. It is shown that  this concept agrees with 

the usual notion of 'Stufe' for congruence subgroups. This provides an effective 

criterion for deciding whether or not an arbitrary subgroup of finite index is a 

congruence subgroup. 

More precisely, let k be a global field, and let As be the ring of S-integers for 

a given finite non-empty set S of places of k containing the archimedean ones. 

For a non-zero ideal a of As the principal S-congruence subgroup F(a) of level a 

is defined as the kernel of the surjective homomorphism 

resa: SL2(As) ~ SL2(As/a) 

obtained by taking residue classes mod a. A subgroup A of SL2(As) of finite 

index is called an S-congruence subgroup if there exists a non-zero ideal q in 

As such that  F(q) C_ A. An S-congruence subgroup A is defined to be of level 

q ('Stufe') if F(q) C_ A and if q is the largest ideal for which this inclusion is 

valid. The congruence subgroup problem for SL2 is the question whether every 

subgroup of finite index in SL2(As) is an S-congruence subgroup. 

Serre [18] formulated the problem by considering the short exact sequence 

1 --+ Cs(SL2) > SL2(k) ~ > SL2(k) > 1 

involving the respective completions SL2(k),SL2(k) of SL2(k) in the topology 

whose fundamental system of neighborhoods of 1 consists of all normal subgroups 

of finite index (resp. all congruence subgroups) in SL(As). The congruence kernel 

c s (SL2)  is, by definition, the kernel of the homomorphism 7r, induced from the 

identity. Thus, the group C S (SL2) measures deviation from an affirmative answer 

to the congruence subgroup problem. It was proved by Serre [18], in the case 

card (S) > 1, that cS(SL2) ~ #k (the finite group of roots of unity in k) if k is 

a totally imaginary number field and S is the set of all archimedean places, and 

Cs(SL2) -- 1 otherwise. When card (S) = 1, Cs(SL2) is infinite. 

Probably, in the case of the group SL2(Z), it was first stated by Klein in 

1879 that  there are subgroups of finite index in SL2(~) that are not congruence 

subgroups (see [8], p. 308, 418, 659); examples were given in 1887 by Fricke [2] 

and Pick [14]. 
Pursuing an idea of Fricke the concept of level for congruence subgroups of 

SL2(Z) was extended to arbitrary subgroups F C SL2(Z) of finite index by 



Vol. 114, 1999 LEVEL FOR SUBGROUPS OF SL2 207 

Wohlfahrt [21, 22]. The definition can be reformulated in group theoretical terms 

as follows: For a given natural number n > 0, let Q(n) be the normal closure of 

the cyclic group (u n} in SL2(Z), 

(11) 
u =  0 1 " 

Then the level of F is defined to be the smallest positive integer nr  such that 

Q(nr)  _< F. As a consequence of the relation 

Q(q)F(n) = ['(q), 

where q is any divisor of n (see, e.g., [22], Theorem 2, or [12], Theorem VIII. 8), 

the two notions of level coincide for congruence subgroups. 

In turn, this result, due to Fricke and Wohlfahrt, played a basic role in con- 

structing and detecting families of non-congruence subgroups in SL2(Z) (see, 

e.g., [22], [15], [11], Theorem 4, [12], VIII. 18, [13]). The minimal index of a 

non-congruence subgroup in SL2 (Z) is 7. 

In section 2, we define the concept of level for arbitrary subgroups F of finite 

index in SL2(As) provided that k is an algebraic number field, or card (S) > 2. 

Let J ( F )  be the set of all non-zero ideals a in As such that the normal closure 

Q(a) of the set of all unipotent matrices 

} M a : =  0 1 [ a E a  

in SL2(As) is contained in F. Then the level of F is defined to be the minimal 

element ar  in J ( F ) .  Next, for a given F of level ar it is proved that F is a 

congruence subgroup if and only if the principal congruence subgroup F(ar)  is 

contained in F. The proof relies on the identity (F(b), Q(a)) = P(a) if b C 

a, b ~ 0, a, b ideals, which, in turn, is a consequence of a result of Bass (as 

was pointed out by J-P. Serre after we had worked out our proof with some 

congruence arguments). 

A more general definition of the level of a subgroup (not necessarily of finite 

index) of SLn(D), D a Dedekind ring, is in [10], see Remark 2.6. (2). 

In section 3, in the case SL2 ((9), O the ring of integers of an imaginary quadratic 

number field k, this criterion for deciding whether or not an arbitrary subgroup 

of finite index is a congruence subgroup is used to determine the minimum of 

the indices of non-congruence subgroups. We define, given k = Q(x/d), d < 0, d 

square free, 

nes(d) := min ~'[SL2(Od): A] A is a non-congruence subgroup of "~ 
[ finite index in SL2(Og) J 
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Then we obtain the following values ncs(-1) = 5, ncs( -2)  = 4, ncs ( -3 )  = 

22, ncs ( -7 )  = 3 and ncs(d) = 2 in all other cases. 

2. A n  e x t e n d e d  c o n c e p t  o f  level  

2.1. Let k be a global field, i.e. k is a finite extension of Q, or the quotient field 

of a polynomial ring Fd[X], Fd a finite field. The field k is an algebraic number 

field in the first case and a function field in the second. The set of places of k 

will be denoted by V, and V~ (resp. VI) refers to the set of archimedean (resp. 

non-archimedean) places of k. If k is a function field, then V~ is empty. The  

completion of k at a place v E V is denoted by k,. For a given place v E V the 

normalized absolute value on kv is denoted by IIv. Let S be a finite non-empty 

set of places of k containing V~. Thus S = S~ U S/, where S ~  = ~ and 

S / - -  S A V/. The set 

As:= { x c k l l x l , > _ O f o r a l l v E Y \ S }  

is a subring of k called the ring of S-integers of k. This ring is a Dedekind ring 

domain, and its field of quotients is k. Usually it is called the Dedekind ring of 

ari thmetic type associated to S or a Hasse domain. If k is an algebraic number 

field and S = S ~ ,  then the Hasse domain As is the ring of integers (9 of k. 

Given a Dedekind ring A of arithmetic type one can consider subrings R which 

contain a non-zero ideal. The ring R is of finite index in A, and R contains a 

unique maximal A-ideal f = {r E R IrA c_ R} called the conductor of R. For 

any non-zero ideal r of R the quotient ring R/r is finite. One can show by use of 

some results in [17] that  the class of finitely generated subrings of global fields 

coincides with the class of rings R introduced here. 

2.2. Let A = As be a Dedekind ring of arithmetic type associated to S, and 

let SL2(A) be the special linear group of (2 x 2)-matrices of determinant  one 

with entries in A. Given a non-zero ideal a of A the principal S-congruence 

subgroup F(a) of level a is defined as the kernel of the natural  homomorphism 

resa: SL2(A) ~ SL2(A/a) obtained by restriction mod a. This morphism is 

surjective ([1], Cor. 5.2.), thus F(a) is a normal subgroup of finite index in 

SL2(A) =: FA. 

Let Q(a) be the smallest normal subgroup of SL2(A) containing the set of 

unipotent  matrices 

. .  1)a o} 
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i.e., Q(a) is the normal closure of Ma in SL2(A). We observe the inclusion Q(a) c 

r(a). 
A subgroup A of FA of finite index is called a congruence subgroup if there 

exists a non-zero ideal a in A such that F(a) C A. 

2.3 LEMMA: Let F be an arbitrary subgroup of SL2(A) of fn i t e  index, and let 

J ( F )  be the set of all non-zero ideals a in A such that the group Q(a) is contained 

in F. Then: 

(1) I f  the global field k is an algebraic number field, or card (S) _> 2, then the 

set fl(F) is non-empty. 

(2) I f  a, b are elements in ,7(r) then their greatest common divisior gcd(a, b) 

is in y (r ) .  
(3) If  fl(F) is non-empty, then there exists a uniquely determined minimal 

element ar in J ( F ) .  The minimal element ar in fl(F) is called the level 

o fF .  

Proof: (1) For this assertion we refer to 1.4. Proposition 1 in [18]. Note that  

the number field case is easy. 

(2) Let c be the greatest common divisor of the ideals a and b in J ( F ) .  As 
abelian group c is generated by a and b. Given an ideal m in A the group Q(m) 

is generated by the elements 7u(x)ff -1, x q m, 3' C FA. Therefore, the inclusions 
Q(a) c F and Q(b) c F imply that Q(c) c F. 

(3) The existence of a minimal element in J ( F )  with respect to the natural 
ordering is immediate. 

2.4 Remark: In the case where k is a function field and card (S) = I one can 

show by looking at [18] section 3 that there exist uncountably many subgroups 

of finite index in SL2(A) not containing any Q(a). 

2.5 THEOREM: Let F be a subgroup o/SL2(A) of finite index, let ar be the level 

of F. Then the following assertions are equivalent: 

(1) There exists a non-zero ideal a in A such that F(a) C_ F, i.e. F is a 

congruence subgroup. 

(2) The principal congruence subgroup F(ar) is contained in F. 

Proof: We prove that assertion (1) implies (2); the reverse implication being 

obvious. The group F has level ar, i.e., by definition, Q(ar) c_ F. On the other 

hand, by F(a) C F, one has F(a- ar) C F. We show that the subgroup generated 

by F(a .  at)  and Q(ar) is equal to r(ar), i.e. 

(3) <F(a. ar), Q(ar)) = r(ar). 
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(4) u(a) 

(5) w(x, y, a) = ( 

Let r, s ¢ A be elements 

This implies F(ar)  C F. This equality is a consequence of a result of Bass (as 

we learned from J-P. Serre after we had completed our original proof with some 

detailed congruence arguments). Indeed, we have to prove that (F(b), Q(a)} = 

F(a) if b C a, b 7 ~ 0, a, b ideals. Passing over to the semi-local ring A/b this 

amounts to showing that the congruence subgroup modulo a of SL2 is equal to 

Q(a). But this is a special case of Proposition 5.1. in [1]. 

For the readers convenience we include our original elementary argument. 

First, (F(a.  ar),  Q(ar ) /c_  r(ar). To see the other inclusion, we are going to 

multiply a given element 3' in r(ar) with elements in Q(ar)  to bring it to F(a .a r ) .  

Let a be any element in at'; then the following matrices are defined: 

( 1  a ) v ( a ) (  1 O )  
0 1 ' a 1 ' 

1 + xya -x2a  ) 
y2a 1 - xya , , x ,y  G A, (x,y) = 1. 

with xr - ys = 1; then we see 

- 1  

y r 0 1 y r 

A given element 3' in F(ar)  is of the form 

( 1 + a l  a2 ) with ai E ar, 1 < i < 4 .  
(6) ~ = a3 1 + a4 

First, there is an a E a r  such that the ideals (1 + al + aa3) and a do not have a 

common divisor. To see this we solve the congruences 

a - 0 rood at ,  
(7) a - - 0 m o d p  ifpla andp]a3, 

a - - a ~ l a l  m o d p  ifp[a andp~a3 .  

Since ar divides a3 there is a solution a to these congruences. Then one checks 

that  all prime ideals p dividing a do not divide the ideal (1 + al + aa3). By 

multiplication with u(a) we obtain from 3  ̀E F(ar)  the element 

( l + b l  b2 ) c F ( a r )  
(8) 71 = u(a). 3  ̀= b3 1 + b4 

with bi C a r  and such that  the ideals (1 + bl) and a do not have a common 

divisor. 
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Second, consider the mat r ix  w ( x ,  y, z) • ")'1- I ts  (1, 1)-entry is given as 

(9) (1 -t- hi)(1 -t- x y z )  - x2zb2. 

We are going to de termine  the variables x, y, z in such a way tha t  the congruence 

(10) (1 + 51)(1 + x y z )  - x2zb2 - 1 mod  aar  

holds. Indeed,  this congruence is equivalent to 

(11) bl - b2x2z + (1 + bl) x y z  - 0 mod a .  aF. 

By choosing z = bl and x = 1, this leads to the congruence 

(12) bl(1  - 52 + (1 + b l )y )  - 0 m o d  a ' a F .  

Recall t ha t  bl E ar ;  thus we can solve (12) if we can find a solution for 

(13) (1 - b2 + (1 + b , )y )  - 0 mod a. 

In turn,  this congruence can be solved in y because (1 + bl) and a do not have a 

c o m m o n  divisor by the first s tep (see (8)). 

Third,  choosing x, y, z in such a way tha t  (10) holds, we obta in  the ma t r ix  

( l + c l  c2 ) 
72 = w ( x ,  y,  z)  . " [1  : c 3 1 + C4 

with cl C a . a r ,  cj E a r , j  = 2, 3, 4. By mult iplying 72 with sui table elements  of 

the form u (a )  and v(~) on the left and the right hand side we can achieve t ha t  

c2 and c3 are elements  in a .  a t .  The  de te rminan t  condit ion det(3'2) = 1 gives 

c4 E a .  a t .  This  proves assert ion (3). 

2.6 R e m a r k s :  (1) The  congruence kernel Cs(SL2)  measures  deviat ion from a 

posit ive answer to the congruence subgroup problem. By [18], C s (SL2) is infinite 

if and only if card (S) = 1. 

There  exist three  families of Dedekind rings of a r i thmet ic  type  with card (S) = 

1. 

(I) Let  k be the  field of rat ional  numbers ,  and A = Z is the ring of integers in 

Q. 
(II) Let  k = Q(x/~),  d < 0, d square free, an imaginary  quadrat ic  number  field, 

and A = (.9 d the ring of algebraic integers in k. 

(III)  Let  k be a function field given as the quotient  field of the coordinate  ring 

A of an afi3ne curve obta ined by removing a point  from a project ive curve 

defined over a finite field. 
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The result 2.5 provides an effective criterion for deciding whether or not an 

arbitrary subgroup of finite index in the cases (I) and (II) is a congruence sub- 

group. It can be used to detect classes of examples of non-congruence subgroups, 

constructed, e.g., in case (II) by use of [3]. In case (II) our criterion will also be 

used in the next section. 

(2) The referee pointed out that a more general definition of the level of a 

subgroup (not necessarily of finite index) of SLn(D) where D is a Dedekind ring 

has been given in [10], p. 257. A more general version of our result 2.5 (together 

with equation (3)) appears as Corollaries 1.2 and 1.3 in this paper. 

This definition of level is more general than that given here in another re- 

spect. It only requires that a subgroup contains the normal subgroup of En(D)  

generated by the q-elementary matrices, where q is a D-ideal. For congruence 

subgroups these definitions coincide. This is due to the fact that a result such 

as 2.5 holds if one replaces Q(a) by the normal subgroup of E2(A) generated by 

Ma. 

3. N o n - c o n g r u e n c e  s u b g r o u p s  o f  m i n i m a l  i n d e x  in t h e  i m a g i n a r y  

q u a d r a t i c  n u m b e r  field case 

Let d be a squarefree negative integer and (.9 d the ring of integers in the imagi- 

nary quadratic number field Q(v/-d). The group SL2 ((-9d) contains non-congruence 

subgroups of finite index (cf. 2.6). We define 

(14) ncs(d) :=  min {[SL2(Od): A]] A i s  a non-congruence subgroup } 
of finite index in SL2(Od) 

The exact values of ncs are described in the following: 

3.1 PROPOSITION: We have 

ncs(-1)  ---- 5, ncs(-2)  = 4, ncs(-3)  = 22, ncs(-7)  ---- 3 

and ncs(d) = 2 in all other cases. 

Proof*: For a given d as above let 1,w be a Z-basis of (-0d and put 

T =  0 1 ' 0 1 c SL2(Od). 

* In the proof certain computer calculations are needed. These were done using 
the computer algebra program GAP developed by J. Neub/iser, Lehrstuhl D at 
the RWTH Aachen. 
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The sabgroup generated by the images of T, U in the commutator  quotients 

SL2(Od) ~b has Z-rank 0 or 1. This is implied by Th~or~me 9 of [18]. Now we 

suppose 

(15) rkz(SL2(Od) ab) :> 2. 

Then there is a surjective homomorphism ~: SL2(Od) ~ Z/2Z with ~(T)  = 

~(U) = 0. Let A be the kernel of ~. By construction, the level of A is the unit 

ideal (-gd. We infer from Theorem 2.5 that  A is not a congruence subgroup. 

Hypothesis (15) is verified if the class number of Od is greater than or equal to 

2. This follows from Corollaire 3 of Th~or~me 8 in [18]. Hence Proposition 3.1. 

is proved for all d not in the following Iist, 

- 1 ,  - 2 ,  - 3 ,  - 7 ,  -11 ,  -19 ,  -43 ,  -67 ,  -163.  

Of course these are exactly those values of d for which Od has class number 1. 

For d = - 4 3 , - 6 7  hypothesis (15) is verified in [20]. For an explicit s tatement  

of hypothesis (15) for the case d = -163,  see p. 631 in [16]. In the remaining six 

cases a more direct method is needed. 

THE CASE d = -19 :  A presentation of SL2(Od) is contained in [19]. We find 

SL2(Od) ab = Z. Hence there is a surjective homomorphism ~,: SL2(Od) ab -'+ 
X/2Z. Let A be the kernel of W. From [19] we find U ¢ A, hence the level of A is 

2 • O-19. Note that  the prime 2 is inertial in Q(x/-L-~). If F(2 • O-19) would be 

contained in A then SL2(0-19/2. (9-19) would have a subgroup of index 2. But 

(_9_19/2 - (.9_19 is the field with 4 elements, and Satz 6.10 of [6] says that  this is 

not the case. By Theorem 2.5 we infer that  A is not a congruence subgroup. 

THE CASE d : -11 :  In this case exactly the same argument as for d = - 1 9  

may be applied to get n c s ( - l l )  = 2. 

THE CASE d = --7: From the presentation given in [19] or [5] we read off that  the 

group SL2(O-7) has exactly 3 subgroups of index 2. The prime 2 is decomposed 

in Q ( ~ k ~ ) ;  let 2(9_7 = p - p  be the corresponding primary decomposition. We 

h ave 

S L 2 ( O - 7 / 2 0 - 7 )  = SL2(O-7/p)  x SL2((9_7/~) = SL2(Z/2Z) x SL2(Z/2Z). 

The group on the right hand side evidently has 3 subgroups of index 2. Since 

the reduction homomorphism SL2(O-7) -~ SL2(0-7/20-7) is surjective the 3 

subgroups of index 2 in SL2(O-7) all contain 1"(2. o_7). We infer ncs ( -7 )  _> 3. Is 

is also clear (from the presentation in [19]) that  SL2 (0 -7 )  has a normal subgroup 
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A of index 3. The level of A has to be 3. (9-7 because 3. (9-7 is a prime ideal. If 

F(3-(9-7)  is contained in A then SL2(O-7/3(9-7) = SL2(F9) (F9 the field with 9 

elements) contains a normal subgroup of index 3. By Satz 6.10 of [61 this is not 

the case. We conclude that  A is not a congruence subgroup and ncs ( -7)  = 3. 

THE CASE d = - 2 :  Using the low-index-subgroup routine provided by GAP on 

the presentation for SL2((gd) from [19] or [5] we find the following table for the 

numbers of conjugacy classes N ( I )  of subgroups of index IinSL2 ((gd) : 

I N ( I )  l(I) 
1 1 1 
2 3 2 
3 5 3 w  
4 9 12 

The entry l(I) gives the maximal ideal a = l ( I ) .  0 - 2  so that  Q(a) < A for every 

subgroup A of index I in SL2(O_2). Here we have chosen co = x/L2. For every 

subgroup A of index I in 8L2(O-2) the computer program GAP provides us with 

the permutat ion representation 9a :  SL2(O-2) > 8i  (SI the symmetric group 

on I elements) on the set of right cosets SL2(O_2)/A. From this information the 

level of A can easily be read off. For one of the subgroups A of index 4 GAP 

gives (11) 
~A : T  = 0 1 

U = 0 1 

A__ ( 0 - 1 )  1 0 

j = ( - 1  0 
\ 0 - 1  

, > (2,3,4), 

), 

, > (2,3,4), 

> ( 1 , 2 ) ( 3 , 4 ) ,  

> id. 

The subgroup A is the stabilizer of 1 under this representation. We find that  

T 3, U 3, T U  -1 E ker ~A, hence the level of A is a = ( l - w ) . 0 - 2 .  As an application 

of the Todd-Coxeter  routine of GAP we find that  the group 

SL2(0 -2 ) /<<  T3, U3,TU -1 >> 

has 24 elements. Here the double brackets << >> stand for the normal subgroup 

generated by the elements included. This implies that  

<< T 3, U3,TU -1 >>= F-2(a)  
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where F 2(a) is the full congruence group of level a = ( 1 -  co). (9_2 in SL2((9-2). 

We conclude that A, and hence every group in the conjugacy class of A, is 

a congruence subgroup. Similarly there is a conjugacy class of subgroups of 

SL2(O_2) of index 4 and level (1 + co)(9-2 arising from the isomorphism 

SL2((9-2/(1 + cz)(9_2) ~ SL2(F3). 

GAP tells us that there is a third conjugacy class of subgroups of SL2(O-2) with 

index 4 and level dividing 3. We give the permutation representation of one of 

its repesentatives: 
qaA:T , > (2, 3,4), 

U ~ > id, 

A ,  ~ (1,2)(3,4), 

J ~ > id. 

There are two ways to see that A is not a congruence subgroup. Since A has ob- 

viously level 3. (9-2, our Theorem 2.5 implies that F_2(3. (9-2) _< A. Considering 

also the 2 conjugacy classes described before we find that 

S L 2 ( ( 9 _ 2 / 3 .  (9-2) ~ SLa(Fa) x SLa(F3) 

would have at least 3 conjugacy classes of subgroups of index 4. It is a simple 

exercise to see that this group has only two such conjugacy classes. The second 

method first notices: 

w = T U A T U - 1 A - 1 U - 1 T - 1 A U T - 1 A  -1  E F_2(3. (9-2). 

By Theorem 2.5 we conclude ~A(w) = id. A quick glance at the above 

permutation representation shows that this is not the case. 

GAP tells us that in addition to the 3-conjugacy classes described so far there 

are 6 conjugacy classes of subgroups of SL2(O_2) of index 4 and level dividing 

4 .  (9_2. But the finite group SL2((9-2/4 - (9_2) has only 4 conjugacy classes 

of subgroups of index 4. Hence there are 2 conjugacy classes of non-congruence 

subgroup of SL2(O-2) of index 4 and level dividing 4. (9_2. These are represented 

by the two distinct normal subgroups of index 4 and cyclic quotient. That  these 

are non-congruence subgroups is shown by Theorem 2.5 and 

SL2(O_2/4.0--2) ab : Z / 2 Z  x Z / 2 Z .  

The discussion so far shows that ncs(-2)  <_ 4. It remains to treat the subgroups 

of index 2, 3. A simple computation (made easier by the help of GAP) shows 
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that  

SL2(O/2 .0 - -2 )  a b  ----- Z/2Z x Z/2Z. 

This immediately implies that  all subgroups of index I = 2 in SL2(O-2) are 

congruence groups. 

It  is elementary to show that  

SL2(O-2/w. 0 - 2 )  ~-- SL2(N2) 

has 1 conjugacy class of subgroups of index 3 and 

S L 2 ( O - 2 / 2 0 - 2 )  ~ SL2(F3) x SL2(F3) 

has 4 of these. We conclude that  8L2(O_2) has at least 5 conjugacy classes 

of congruence subgroups of index 3. Since GAP tells us that  there are only 5 

conjugacy classes of subgroups of index 3 in SL2(O-2) all these are congruence 

subgroups. 

THE CASE d = - 1 :  With the same notation as for the case d = - 2  we give the 

table of conjugacy classes of subgroups of index _< 5 in SL2(O-1) computed by 

GAP: 
I N(I) l(I) 
1 1 1 

2 3 2 
3 1 1 + i  
4 4 4 

5 4 5.6 

Tile situation is now analysed similarly to the case d -- - 2 .  First of all we consider 

the finite group SL2(O t / 4 -  O-1) .  We find 

SL2(0_1/40_1) ab = Z/2Z x Z/27,. 

This shows that  all subgroups of index 2 in SL2(O-1) are congruence subgroups. 

It  is also easily shown that  SLe (O_I /40_a )  has at least 1 conjugacy class of 

subgroups of index 3 and 4 of index 4. This then shows that  all subgroups 

of indices 3, 4 in SL2(O_1) are congruence subgroups. There are 2 distinct 

conjugacy classes of congruence subgroups of index 5 in SL2(O-1) coming from 

the subgroups of index 5 in 

SL2(Fs) -- SL2(O-1/(1 + 2i)O_a) ~ SL2(O_1/(1 - 2i)O-1).  



Vol. 114, 1999 LEVEL FOR SUBGROUPS OF SL2 217 

There are 2 further conjugacy classes of subgroup of index 5 in SL2(O-1). We 

give the permutation representations of a representative of each: 

(1 1) 
, > (3, 4 , 5 ) ,  ~ A :  : T  , > ( 4 , 5 ) ,  ~A1 : T = 0 1 

) > ( 1 , 2 ) ,  U ,  ~ ( 1 , 2 , 3 ) ,  U = 0 1 

A = ( 0 - I  ) ,  > (2,3)(4,5), A ,  > (3,4) 
1 0 

L = 
\ } 0 i 

Again the subgroup A1, A2 are the stabilizers of 1 under the two representations 

respectively. The group A1 has level 2 - O-1 whereas A2 has level 3 - O-1.  

Neither can be a congruence subgroup since 

SL2(0-I/60-I) ~ SL2(0-I/20-I) × SL2(0_I\30_,) 

SL2(O-1/2 .  O-1) x SL2(F9) 

has no subgroup of index 5. 

THE CASE d = - 3 :  With the same notation as for the case d = - 2  we give the 

table of conjugacy classes of subgroups of index < 22 in SL2(O-3) computed by 

GAP: 

I N(I) l(I) I N(I) l(t) I N(I) l(t) 
1 1 1 9 1 3 17 0 

2 0 10 1 2 18 5 6 

3 1 1 ÷ 2w 11 0 19 0 

4 1 1 + 2w 12 7 12 20 10 4.19 • (1 + 2w) 

5 1 2 13 0 21 6 7 + 14w 
6 2 2 + 4w 14 6 91 22 2 5 -7 

7 4 7 15 4 6 

8 3 7 + 14w 16 6 28 

Here we have chosen w = - 3  + . It is a series of simple exercises to analyse 

the subgroups of the finite groups SL2(0-3/10_3) where 1 runs through the 

divisors of the l(I) given above for 1 < I _< 21 and find that there are enough 

conjugacy classes of congruence subgroups in SL2 (O-3) to exhaust all conjugacy 

classes of these indices. The computer program gives us 2 conjugacy classes of 

subgroups of index 22 in SL2(O_I). We give the permutation representations of 
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two representatives: 

(11) 
T =  0 1 ' 

~ t ,~ :T ,  ~(1, 

U,  >(1, 

A,  >(1, 

L ,  >(1, 

!PA~:T' > (1, 

U~ >(1, 

A.  >(1, 

L~ > (1, 
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U =  (10 W)l ' A =  ( 0 1 % 1 ) ,  L =  ( 0 2  w0)" 

7, 13, 10, 18, 5, 14)(2, 9, 19, 16, 12)(3, 4, 15, 22, 20)(6, 21, 8, 11, 17), 

18, 7, 5, 13, 14, 20)(2, 9, 19, 16, 12)(3, 22, 4, 20, 15)(6, 8, 17, 21, 11), 

3)(2, 5)(4, 9)(7, 11)(8, 10)(12, 16)(14, 19)(15, 18)(17, 20)(21, 22), 

5, 7)(2, 3, 11)(4, 6, 9)(8, 19, 15)(10, 18, 14)(12, 20, 21)(16, 22, 17). 

7, 14, 5, 15, 11, 19)(2, 18, 22, 17, 13)(3, 20, 4, 21, 9)(6, 8, 12, 16, 10), 

14, 15, 19, 7, 5, 11)(2,17, 18, 13, 22), (3, 4, 9, 20, 21)(6, 8, 12, 16, 10), 

3)(2, 5)(4, 10)(6, 15)(7, 12)(8, 13)(9, 16)(11, 20)(14, 17)(18, 22), 

5, 7)(2, 3, 12)(4, 16, 18)(6, 17, 20)(8, 13, 21)(9, 10, 22)(11, 14, 15). 

The group A1 (which is as always the stabilizer of 1 under the representation 
~VA~) has level al = 5 . ( 2 + 3 w ) - 0 - 3  and A2 has level a2 = 5(1+3w)(9_3. Neither 
can be a congruence subgroup since 

SL2( (9-3/fll) ~ SL2((9-3/a2) ~ SL2(~25) × SL2(~7) 

has no subgroup of index 22. 
For the groups A1, A2 we have 

(PAl (SL2( (9 -3) )  = ~gA 2 ( S L 2 ( O - 3 ) )  = A22 

which also implies that  they are not congruence subgroups. 

3.2 Remark: There is a subgroup A of index 12 in SL2((9-3) so that  A acts 
fixed point freely on 3-dimensional hyperbolic space 

H 3 = SL3(C)/SU(2) 

and so that  H3/F is homeomorphic to the complement of the figure-eight knot 
in the 3-sphere S 3. This was discovered by R. Riley; see [5] for a description of 
this group. Our discussion in the proof of Proposition 3.1 shows that  A is a 
congruence subgroup (of level 4. (9-3). This gives rise to an interesting algebra of 
endomorphisms of A ab = Z given by the usual Hecke-algebra construction. The 
eigenvatues of these Hecke operators are in intimate relationship with the traces 
of the Frobenius maps for the elliptic curve y2 = x 3 + (w - 1)x 2 - wx. 
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3.3 Remark :  I t  is na tura l  the consider also congruence subgroups  in the groups 

PSL2(Od) := SL2(Od)/{±I} .  

T h e y  are defined as the 

b) (1 0)mod } 
c d c P S L 2 ( O a )  c d - + 0 1 

as a varies over the  nonzero ideals of Od. Let npcs(d) be the minimal  index of a 

non-congruence subgroup  in PSL2(Od).  We clearly have npcs(d) _> ncs(d) for all 

d. Small ref inements  in the  a rguments  for Proposi t ion 3.1 show tha t  npcs(d) = 

ncs(d) for all d. 

3.4 Remark: Let A < SL2(Od) be a congruence subgroup and ncs(A) the mini- 

real index of a non-congruence subgroup in A. Let ns(d) be the min imum of the 

ncs(A) as A varies over all congruence subgroups of SL2(Od). By an appl icat ion 

of the me thods  of the present  paper  and of the results of [3] it is possible to prove 

ns(d) = 2 for all d. T h e  same result  holds for the groups PSL2(Od).  
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